skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Russell, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 18, 2026
  2. Free, publicly-accessible full text available March 24, 2026
  3. NA (Ed.)
    Oyster reef restoration efforts and on-bottom aquaculture are frequently plagued with high predation rates. Oysters are phenotypically plastic, and rearing juvenile oysters, Crassostrea virginica, with predator cues causes them to grow stronger shells that increases survivorship in the field. However, induced defenses (e.g., shell hardening in oysters) are often associated with cost-benefit trade-offs, and the extent the increased shell strength persists into adulthood and alters the growth of somatic and reproductive tissues remains unknown. We raised diploid oysters (used in reef restoration) and triploid oysters (used in aquaculture) with and without predator cues for one month before placing individuals on an oyster farm to grow to market size. Oyster shell characteristics, soft tissue mass, and reproductive investment were measured periodically over one year of culture and compared across treatments. Both diploid and triploid oysters had significantly stronger and smaller shells than controls at the end of their nursery period. However, while diploid shells became 15 % stronger and 17 % smaller than controls, triploid shells became 28 % stronger and 23 % smaller. Additionally, triploid oysters exposed to predator cues returned to the size of controls faster and maintained their shell strength differences longer than diploids. Differences in soft tissue mass between treatments mirrored the patterns exhibited in shell size and weight with greater initial physiological costs and faster recovery for triploid individuals. There was no significant difference in somatic or reproductive tissue mass between induced and control oysters of the same ploidy after seven months in the field. Triploid oysters were 15–110 % larger than diploids depending on the characteristic measured at maturity. Additionally, there was a significant interaction between treatment and ploidy because induced triploids had marginally greater growth than their control counterparts while induced diploids had marginally less growth than controls. These findings demonstrate that physiological costs of oysters reacting to predators in early life stages are minimal by the time individuals reach maturity. Early exposure to predator cues is a promising tool for improving oyster survivorship in restoration and aquaculture operations, especially in regions with high predation pressure. 
    more » « less
    Free, publicly-accessible full text available February 15, 2026
  4. Nanohybrids of graphene and colloidal semiconductor quantum dots (QDs/Gr) provide a promising quantum sensing scheme for photodetection. Despite exciting progress made in QDs/Gr photodetectors in broadband from ultraviolet to short-wave infrared, the device performance is limited in middle-wave infrared (MWIR) detection. A fundamental question arises as to whether the thermal noiseinduced dark current and hence poor signal-to-noise ratio in conventional uncooled MWIR photodetectors persist in QDs/ Gr nanohybrids. Herein, we investigated noise, responsivity (R*), and specific detectivity (D*) in HgTe QDs/Gr nanohybrids, revealing that the noise and R* are decoupled in nanohybrids and each can be optimized independently toward its theoretical limit. Specifically, the noise in the QDs/Gr nanohybrids is dominated by that of graphene with a negligible effect from the dark current in HgTe QDs and can be optimized to its intrinsic limit by removing charge doping of adsorbed polar molecules on graphene. Furthermore, the R* is proportional to the photoconductive gain enabled by the strong quantum confinement in QDs and Gr. Achieving high gain in the MWIR spectrum, however, is challenging and requires elimination of charge traps primarily from the surface states of the narrow-bandgap semiconductor HgTe QDs. Using grain-rotation-induced grain-coalescence growth of single-layer and core/shell HgTe QDs, we show the that HgTe QDs surface states caused by Te deficiency can be dramatically suppressed, resulting in high gain up to 4.0 × 107 in the MWIR spectrum. The optimized noise and R* have led to high uncooled MWIR D* up to 2.4 × 1011 Jones, making nanohybrids promising to surpass the fundamental dark-current limit in conventional photodetectors. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  5. Reverse electrowetting-on-dielectric (REWOD) energy harvesting is an effective energy harvesting method at low frequencies such as the frequencies of human motion. Various REWOD energy harvester designs have been presented in prior works, but these generally use rigid and often expensive substrates and time-consuming and/or costly fabrication methods. To address these challenges, in this work REWOD energy harvesters were fabricated consisting of aluminized polyester sheets as the functional layers and with polycarbonate sheets for added mechanical support. The fabrication of these samples eliminates the need for costly materials, clean room technologies, and high-end equipment. Samples were characterized using a flat arrangement and on a test fixture that simulates the repeated bending that occurs on the back of a bending knee. Without applying any external bias voltage, the maximum voltage and current output for the bending samples were determined to be 25.1 mV and 230 nA, respectively, and the corresponding maximum power is 5.77 nW at a bending frequency of 5 Hz. With an estimated cost of U.S. $ 0.28 for each REWOD harvester (U.S. $ 0.03/cm2), the cost per nanowatt of power is U.S. $ 0.05/nW, which is approximately 380 times lower than the approximately U.S. $ 19/nW of our previous REWOD energy harvesters. Our simple devices provide a low-cost, easily fabricated flexible approach to wearable motion sensing and energy harvesting that can be useful for various healthcare applications. 
    more » « less
  6. A unique method for capturing energy from mechanical electrolyte modulation is known as reverse electrowetting-on-dielectric (REWOD). Prior REWOD studies relied on rigid electrodes which demand a high bias voltage to maximize harvested power, hindering the advancement of self-powered wearable health-monitoring sensors. In addition, the amount of energy harvested via the REWOD technique can be improved to a greater extent with the utilization of a high-dielectric (high-k) metal oxide (HDMO) layer on flexible electrodes. In this study, two distinct sets of electrodes that are flexible are utilized for harvesting energy with the REWOD phenomenon. The samples were coated with HDMO layers, namely, hafnium oxide (HfO2) and manganese dioxide (MnO2), respectively. The material deposition on a polyimide sheet is employed via a sputtering-based physical vapor deposition (PVD). The utilization of MnO2 samples with the proposed flexing REWOD test measurement generated 476.21 μW/cm2 an utmost power density value with an encapsulated electrolyte between electrodes. 
    more » « less
  7. In Northern Virginia, engineering technology career pathways are underdeveloped. Rapid changes in industrial processes have led to an increased need for adaptable and flexible workers who can respond creatively to shifting production technologies (Agarwal et al., 2018). In particular, workers with expertise in design thinking, communication, and critical thinking skills are in high demand (Giffi et al., 2018). Despite high wages created by this demand, engineering technology careers are largely invisible to students and the belief that manufacturing is low-tech persists (Giffi et al., 2017; Magnolia Consulting, 2022). These conditions suggest that investment in teacher professional learning (PL) is warranted. The integration of digital fabrication (e.g., 3D printing) into classroom teaching is one promising avenue to increase student interest and awareness of engineering technology careers (Peppler et al., 2016). However, studies of classroom implementation of digital fabrication technologies also report that teachers struggle to move beyond “keychain syndrome” – the tendency to fall back to reproducing simple objects, such as a keychain (Blikstein, 2014; Eisenberg, 2013). Educator PL in digital fabrication has centered on machine operation, and not the pedagogy, cognitive strategies, and processes to situate the technology (Smith et al., 2015). This project investigates the effectiveness of a sustained and interdisciplinary design thinking PL fellowship (“Makers By Design”) in improving integration of fabrication and design thinking into teaching practice. Design thinking is a non-linear user-centered strategy used to approach the design of products, emphasizing collaborative project-based methods to solve real-life problems (Brown, 2008). In the classroom, design thinking can serve as a cognitive bridge between a design problem and digital fabrication technologies. Participating Makers By Design fellows (n=17) completed 1) a series of design thinking workshops, 2) practice teaching at digital fabrication summer camps, and 3) development and integration of a design thinking challenge. Fellows completed the above in interdisciplinary groups consisting of K-12 teachers, college faculty, and librarians. Using a mixed-methods approach, this paper evaluates the extent to which participating educators reported increased confidence in integrating design thinking and digital fabrication into their instruction, demonstrated content mastery during teaching practice, and successfully developed and deployed design challenges. Data sources include pre- and post-surveys, focus groups within teaching discipline, and observations of summer camp and classroom teaching. Project results are aligned with the existing literature on successful PL (e.g., Capps et al., 2012) and recommendations for future digital fabrication-centered PL are discussed. 
    more » « less